THE REPAST SIMPHONY DEVELOPMENT ENVIRONMENT

M.J. NORTH,™ Argonne National Laboratory, Argonne, IL,
and The University of Chicago, Chicago, IL
T.R. HOWE, Argonne National Laboratory, Argonne, IL
N.T. COLLIER, Argonne National Laboratory, Argonne, IL,
and PantaRei Corp., Cambridge, MA
J.R. VOS, Argonne National Laboratory, Argonne, IL,
and the University of Illinois at Urbana-Champaign, Urbana, IL

ABSTRACT

Repast is a widely used free and open-source agent-based modeling and simulation
toolkit. Three Repast platforms are currently available, each of which has the same core
features but a different environment for these features. Repast Simphony (Repast S)
extends the Repast portfolio by offering a new approach to simulation development and
execution. The Repast S development environment is expected to include advanced
features for agent behavioral specification and dynamic model self-assembly. This paper
introduces the architecture and core features of the Repast S development environment. A
related paper in the Agent 2005 conference proceedings by the same authors that is titled
“Repast Simphony Runtime System” discusses the Repast S model execution
environment.

Keywords: Agent-based modeling and simulation, Repast, toolkits, development
environments

INTRODUCTION

Repast is a widely used free and open-source agent-based modeling and simulation
toolkit (ROAD 2005; North et al. 2006). Three Repast platforms are currently available, each of
which has the same core features but a different environment for these features.

Repast Simphony (Repast S) extends the Repast portfolio by offering a new approach to
simulation development and execution. The Repast S development environment is expected to
include advanced features for agent behavioral specification and dynamic model self-assembly.
This paper introduces the architecture and core features of the Repast S development
environment. A related paper in these conference proceedings (North et al. 2005) discusses the
Repast S runtime environment.

It is important to note that Repast S and its related tools are still under development. This
paper presents the most current information as of the time it was written. However, changes may
occur before the planned final release.

* Corresponding author address: Michael J. North, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne,
IL 60439; e-mail: north@anl.gov.

RELATED WORK

There are a variety of existing agent-based modeling toolkits. Repast J, Repast Py, Repast
.NET, NetLogo, and Swarm are just a few examples (ROAD 2005; Wilensky 1999; SDG 2005).
The growing agent-based modeling literature suggests that the existing toolkits have been useful
for many modelers. However, as outlined in North et al. (2005), more is needed. In particular,
with respect to development environments, there are continuing needs to reduce the distance
between modelers and programmers, automate common tasks, and directly support model and
enterprise information system integration. The Repast S development environment is explicitly
intended to meet these needs.

THE REPAST S MODEL IMPLEMENTATION BUSINESS PROCESS

As discussed in North et al. (2005), the Repast S model implementation business process
is as follows:

» The modeler creates model pieces, as needed, in the form of plain old Java
objects (POJOs), often using automated tools.

» The modeler uses declarative configuration settings to pass the model pieces
and legacy software connections to the Repast S runtime system.

* The modeler uses the Repast S runtime system to declaratively tell Repast S
how to instantiate and connect model components.

* Repast S automatically manages the model pieces based on (1) interactive
user input and (2) declarative or imperative requests from the components
themselves.

The POJO model components can represent anything, but are most commonly used to
represent the agents in the model. The POJOs can be created using any method. This paper
discusses one powerful way to create POJOs for Repast S, namely, the Repast Simphony
development environment. However, any method from hand coding, to wrapping binary legacy
models, to connecting into enterprise information systems can be used to create the Repast S
POJO model components.

Regardless of the source of the POJOs, the Repast S runtime system is used to configure
and execute Repast S models. North et al. (2005) details the Repast S runtime system. In
summary, the Repast S runtime design includes:

» Point-and-click model configuration and operation;

» Integrated two-dimensional, three-dimensional, geographical information
system (GIS), and other model views;

» Automated connections to enterprise data sources; and

» Automated connections to powerful external programs for statistical analysis
and visualization of model results.

ANNOTATIONS AND SETTINGS

Repast S uses a new feature in Java 5, namely, annotations, to declaratively mark code
for later operations. Annotations are metadata tags that are compiled into binary class files. Like
comments, annotations are not directly executed. Unlike comments, annotations are stored in the
compiled versions of source code. This storage allows executing Java programs such as the
Repast S runtime system to read and act on the encoded metadata. This allows Repast S
developers to declaratively mark or annotate code at design time for special processing by the
Repast S runtime system. This facility is used for tasks such as declaring “watchers.” The
example in Figure 1 shows an agent behavior that is activated any time a connected network
neighbor or friend changes its “happiness” attribute. Watchers are considered further in
North et al. (2005). Annotations are also used for tasks such as scheduling, as shown in Figure 2.

Repast S is expected to use two major types of settings, namely, model and scenario
descriptors, to glue or bond models together. Model descriptors define what can be in a model,
such as the allowed agent types, permitted agent relationships, and watching information.
Scenario descriptors define what actually is in a model, such as agent data sources,
visualizations, and logging. Model and scenario descriptors are stored in XML files. Descriptors
are discussed in North et al. (2005).

@watch(watcheeClassName = “‘repast.user._models.SimpleHappyAgent”,
watcheeFieldName = “happiness”, query = “linked_from”,
whenToTrigger = WatcherTriggerSchedule.LATER, scheduleTriggerDelta = 1,
scheduleTriggerPriority = 0)
public void friendChanged(SimpleHappyAgent friend) {

if (Math_.random() > .25) {

this.setHappiness(friend.getHappiness());
} else {

this.setHappiness(Random.uniform.nextDouble());

}

}

FIGURE 1 An example “Watcher” annotation for a simple happy agent method

@ScheduledMethod(start = 1, pick = 1)
public void changeHappiness(Q) {
this.happiness = Random.uniform.nextDoubleFromTo(0, 1);

}

FIGURE 2 An example “Scheduler” annotation for a simple happy agent method
(“Start” is the time step to call the method, and “Pick” indicates random selection
of one of the available simple happy agents)

Model descriptors are to be created at model development time, while scenario
descriptors are expected to be created at runtime. The Repast S development environment is
expected to provide both a wizard for creating and a point-and-click editor for modifying model
descriptors. The Repast S runtime environment includes a point-and-click panel for creating and
maintaining scenario descriptors.

THE WEASELS

The Repast S development environment is expected to use the CodeWeasel Eclipse
plugin system. CodeWeasel is a set of Java plugins for the Eclipse development environment
(Eclipse 2005). CodeWeasel is being developed by the Argonne Repast team to support systems
such as Repast S. CodeWeasel is expected be released as a separate free and open-source project
that supports Repast S.

CodeWeasel is expected to work within Eclipse to automate and simplify the creation and
maintenance of Java code. Eclipse itself contains powerful tools to create and maintain Java
packages and classes. CodeWeasel contains tools that augment and fill in gaps in these existing
functions. The guiding design rule for CodeWeasel is that only pure Java files are used. No
separate non-Java metadata or state files are allowed to store user code. Currently, the main
members of the CodeWeasel family are MethodWeasel, FieldWeasel, and LegacyWeasel.
Additional tools may also be introduced.

MethodWeasel has a wizard and visual editor for Java methods. The wizard, shown in
Figure 3, provides a point-and-click tool for creating new method signatures (e.g., method name,
method parameters, and method return type) and specifying method annotations. The wizard
currently builds on the free and open-source Eclipse Plug-in Method Wizard (Hawlitzek 2005).
The visual editor represents Java code as an editable flowchart as shown in Figure 4. The
contents of the flowchart are planned to have a direct correspondence with Java code so the
editor can work with almost any standard Java 5 code, regardless of whether or not it was
originally created with MethodWeasel. The visual editor also is expected to provide point-and-
click tabs for modifying method signatures and changing method annotations.

Much like MethodWeasel, FieldWeasel has a wizard and visual editor. Unlike
MethodWeasel, FieldWeasel works with Java fields. The wizard provides a point-and-click
interface for creating and initializing new fields, as shown in Figure 5. As before, the wizard
currently builds on the free and open-source Eclipse Plug-in Method Wizard (Hawlitzek 2005).
The visual editor is expected to allow point-and-click editing of the field signature and
annotations, and is expected to represent the field’s initialization code as an editable flowchart.

LegacyWeasel is a model integration tool that is expected to allow developers to use
straightforward XML documents to specify the format of legacy files (e.g., existing text and
binary files) and the source or destination of the data in Java (e.g., the Java classes that produce
or consume the data). These XML files are expected to be creatable using a point-and click
editor within Eclipse. Once the appropriate XML files are created, LegacyWeasel is expected to
automatically convert the given data sources (e.g., Java objects) into input files; run or activate
the legacy model or programs; and then read the resulting output file contents back into the
appropriate destinations (e.g., the same or different Java objects). In addition to the goal

Java Method

This wizard creates a methad skubin a class. M

Method Mame: | friendChanged

Return Type | wioid ﬂ Browse. ..

[Array Dimensions: |T

Access Modifiers Cther Modifiers
* public " {none/default) [abstract [final
" private " protected [native [skatic

[synchronized

\What parameters should this method have?

SimpleHappy Agent Friend

Remove

[Assign parameters ko corresponding fields in bype

< Back, Mext = Einish Cancel

FIGURE 3 One of the pages in MethodWeasel's method wizard

of largely automating and greatly simplifying the often tedious model integration process,
LegacyWeasel XML files have the potential to be used as detailed documentation on the format
and content of legacy model input and output files.

MODEL TOOLS

As previously stated, CodeWeasel is being developed by the Argonne Repast team to
support systems such as Repast S. The various tools within CodeWeasel are expected to provide
model developers with a range of useful functions. In addition to these general-purpose tools, the
Repast S development environment is expected to include a set of specific support tools. These
tools are expected to include a new model wizard, a new model specification file wizard, and a

& Java - friendChanged - Eclipse SDK

=
B
Fle Edit Mavigate Search Project Run Window Help
It -H H-0-Q- | FAdPEEHE- | @Y & -F G & T &lave
tﬁ Package Explorer 2 Hierarchy T m SimpleHappyAgent.java ﬂwﬁﬁn |
1-:Ej<_ﬁ|>v '.QSelact
=+ b‘J Repast 7 iz .Marquee
= b‘J Simple Happy Agents (= Flows s
E} repast.user models. simplshappymade! ; Feandom. uniform. nextDouble() = 0.25 | Default or False
= |1| SimpleHappyagent. java 5 :
3 ; 5 True
=-@ SimpleHappy Agent. /
4 happiness True =
~ @ friendChanged{SimpleHapp;| l,w” [Statement
[+~ B, IRE System Library [jrel.5.0_06] " 2 Loop
this. happiness = Random. uniform. nextDoubled) this, happiness = friend. happiness < Conditional
| & Merge
£
E Properties 52 __'lavadocéDecIaration i
Signature]Excaptions] Annokations | Step Detals]
Method Name: | friendChanged
Return Type] wvoid L] Browse...,
™ 412y Dimensions:]‘H

tmafzam || |

FIGURE 4 The MethodWeasel method editor

Java Field

This wizard creates a field in a class,

Field Mame:

| happiness

T\l,-'pe | daouble

ﬂ Browse, ..

[Array Dimensions: |T

Access Modifiers

Other Modifiers
{* public

" {nonefdefault) [final [transient

" private " protected [static [wolatile

Default Yalue: [1.0

Mext = | Einish | Cancel

FIGURE 5 One of the pages in FieldWeasel's field wizard

model specification file editor. The new model wizard is expected to be used to create new
Repast S models (i.e., Repast S projects) in Eclipse. The new model specification wizard is
expected to be used to create model specification XML files, while the model specification editor
is expected to allow these files to be updated on a point-and-click basis. Additional tools may
also be provided.

CONCLUSIONS

The Repast S runtime is a pure Java extension of the existing Repast portfolio. Repast S
extends the Repast portfolio by offering a new approach to simulation development and
execution. The Repast S development environment is expected to include advanced features for
agent behavioral specification and dynamic model self-assembly. Any POJO can be a Repast S
model component. This paper discusses one powerful agent modeling-focused way to create
such POJOs, namely, the Repast S development environment. However, any method from hand
coding, to wrapping binary legacy models, to connecting into enterprise information systems can
be used to create Repast S model components. Once the model components are created, Repast S
is expected to provide a set of point-and-click tools for binding the components into working
models.

ACKNOWLEDGMENT

The authors wish to thank David L. Sallach for his visionary leadership in founding the
Repast project and Charles M. Macal for sustaining involvement in the project. This work
is supported by the U.S. Department of Energy, Office of Science, under contract
W-31-109-Eng-38.

REFERENCES

Eclipse, 2005, eclipse, Eclipse home page, Eclipse Foundation Inc., Ottawa, Ontario, Canada;
available at http://www.eclipse.org.

Hawlitzek Consulting, 2005, Eclipse Plug-in Method Wizard; available at http://www.hawlitzek-
consulting.de/Java_Downloads/Eclipse_Extensions/Eclipse_Extensions_English/eclipse_
extensions_english.html.

North, M.J., T.R. Howe, N.T. Collier, and J.R. Vos, 2005, “Repast Simphony Runtime System,”
in C.M. Macal, M.J. North, and D. Sallach (eds.), Proceedings of the Agent 2005
Conference on Generative Social Processes, Models, and Mechanisms, ANL/DIS-06-1,
co-sponsored by Argonne National Laboratory and The University of Chicago, Oct. 13-15.

North, M.J., N.T. Collier, and J.R. Vos, 2006, “Experiences Creating Three Implementations of
the Repast Agent Modeling Toolkit,” ACM Transactions on Modeling and Computer
Simulation 16(1):1-25, ACM, New York, NY, Jan.

ROAD, 2005, Repast, Repast home page, Repast Organization for Architecture and Design,
Chicago, IL; available at http://repast.sourceforge.net.

SDG, 2005, Welcome to the Swarm Development Group Wiki!, Swarm home page, Swarm
Development Group, Santa Fe, NM; available at http://www.swarm.org/wiki/Main_Page.

Wilensky, U., 1999, NetLogo. Center for Connected Learning and Computer-based Modeling,
Northwestern University, Evanston, IL.

	THE REPAST SIMPHONY DEVELOPMENT ENVIRONMENT
	ABSTRACT
	INTRODUCTION
	RELATED WORK
	THE REPAST S MODEL IMPLEMENTATION BUSINESS PROCESS
	ANNOTATIONS AND SETTINGS
	THE WEASELS
	MODEL TOOLS
	CONCLUSIONS
	ACKNOWLEDGMENT
	REFERENCES

